Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[μ_2 -1,2-bis(imidazol-1-ylmethyl)benzene](μ_2 -cyclohexane-1,4dicarboxylato)cobalt(II)]

Min Chen* and Min Xing

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: minchenujs@yahoo.com.cn

Received 18 February 2010; accepted 19 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.079; data-to-parameter ratio = 17.6.

In the the title compound, $[Co(C_8H_{10}O_4)(C_{14}H_{14}N_4)]_n$, the Co^{II} atom is four-coordinated by two N atoms from two different 1,2-bis(imidazol-1-ylmethyl)benzene ligands and two carboxylate O atoms from two different cyclohexane-1,4-dicarboxylate anions in a tetrahedral coordination geometry. The resulting structure is a two-dimensional polymer with layers in the (100) plane.

Related literature

For a related structure, see: Li et al. (2009).

Experimental

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_8\text{H}_{10}\text{O}_4)(\text{C}_{14}\text{H}_{14}\text{N}_4) \end{bmatrix} \\ M_r = 467.38 \\ \text{Monoclinic, } P2_1/c \\ a = 9.785 (3) \text{ Å} \\ b = 12.356 (2) \text{ Å} \\ c = 17.850 (4) \text{ Å} \\ \beta = 99.559 (2)^{\circ} \\ \end{bmatrix}$

Data collection

Oxford Diffraction Gemini R Ultra diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{min} = 0.51, T_{max} = 0.83$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.079$ S = 0.964923 reflections $V = 2128.2 (9) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.84 \text{ mm}^{-1}$ T = 293 K $0.27 \times 0.21 \times 0.17 \text{ mm}$

9866 measured reflections 4923 independent reflections 3485 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

280 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.22$ e Å⁻³ $\Delta \rho_{min} = -0.36$ e Å⁻³

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank Jiangsu University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5196).

References

Li, B.-B., Fang, G.-X., Ji, X.-N., Xiao, B. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1012.

Oxford Diffraction (2006). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m330 [doi:10.1107/S160053681000646X]

$Poly[[\mu_2-1,2-bis(imidazol-1-ylmethyl)benzene](\mu_2-cyclohexane-1,4-dicarboxylato)cobalt(II)]$

M. Chen and M. Xing

Comment

The flexible N-donor ligand, 1,2-bis(imidazol-1-ylmethyl)benzene is a good candidate for the construction of coordination polymers (Li *et al.*, 2009). We report here the synthesis and structure of the title compound, composed of this ligand, cyclohexane-1,4-dicarboxylate and Co atoms.

The Co^{II} atom is four-coordinated by two nitrogen atoms from two different 1,2-bis(imidazol-1-ylmethyl)benzene ligands and two carboxylate oxygen atoms from two different cyclohexane-1,4-dicarboxylate anions in a tetrahedral coordination geometry. The resulting structure is a two-dimensional polymer with layers in the (1 0 0) plane.

Experimental

1,4-H₂chdc (0.5 mmol), 1,2-bix (0.5 mmol) and cobalt chloride hexahydrate (0.5 mmol) were placed in water (12 ml), and triethylamine was added until the pH value of the solution was 5.4. The solution was heated in a 23 ml Teflon-lined stainless-steel autoclave at 430 K for 5 days. The autoclave was cooled to room temperature over several hours. Purple crystals were isolated in about 38% yield.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 to 0.98 Å) and refined as riding, with $U_{iso}(H)=1.2U_{eq}(C)$.

Figures

Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x, -0.5-y, z-0.5; (ii) 1-x, y-0.5, 0.5-z.

$Poly[[\mu_2-1,2-bis(imidazol-1-ylmethyl)benzene](\mu_2-cyclohexane-1,4-dicarboxylato)cobalt(II)]$

Crystal data	
$[Co(C_8H_{10}O_4)(C_{14}H_{14}N_4)]$	F(000) = 972
$M_r = 467.38$	$D_{\rm x} = 1.459 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4923 reflections

a = 9.785 (3) Å
<i>b</i> = 12.356 (2) Å
c = 17.850 (4) Å
$\beta = 99.559 \ (2)^{\circ}$
V = 2128.2 (9) Å ³
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra diffractometer	4923 independent reflections
Radiation source: fine-focus sealed tube	3485 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ω scan	$h = -8 \rightarrow 12$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)	$k = -16 \rightarrow 15$
$T_{\min} = 0.51, \ T_{\max} = 0.83$	$l = -23 \rightarrow 22$
9866 measured reflections	

 $\theta = 2.3-29.1^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 293 KBlock, purple

 $0.27 \times 0.21 \times 0.17 \text{ mm}$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.079$	H-atom parameters constrained
<i>S</i> = 0.96	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0456P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4923 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
280 parameters	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.73125 (18)	0.35656 (12)	0.18015 (9)	0.0353 (4)
C2	0.82011 (19)	0.44982 (12)	0.21681 (8)	0.0372 (4)
H2	0.9170	0.4315	0.2151	0.045*
C3	0.8064 (2)	0.46346 (14)	0.30090 (9)	0.0452 (4)
H3A	0.7090	0.4687	0.3049	0.054*
H3B	0.8434	0.3996	0.3287	0.054*
C4	0.8814 (2)	0.56275 (15)	0.33757 (10)	0.0515 (5)
H4A	0.9805	0.5529	0.3407	0.062*
H4B	0.8621	0.5705	0.3889	0.062*
C5	0.8367 (2)	0.66551 (14)	0.29255 (10)	0.0476 (5)
Н5	0.8949	0.7248	0.3162	0.057*
C6	0.8670 (2)	0.65185 (14)	0.21139 (10)	0.0513 (5)
H6A	0.8402	0.7171	0.1824	0.062*
H6B	0.9657	0.6411	0.2130	0.062*
C7	0.7878 (2)	0.55525 (13)	0.17234 (9)	0.0450 (5)
H7A	0.8115	0.5467	0.1220	0.054*
H7B	0.6892	0.5696	0.1665	0.054*
C8	0.6860 (2)	0.69815 (14)	0.29141 (10)	0.0460 (5)
С9	0.64364 (19)	0.15946 (12)	0.36882 (9)	0.0393 (4)
Н9	0.6565	0.2340	0.3690	0.047*
C10	0.65119 (17)	0.09703 (13)	0.43108 (8)	0.0368 (4)
H10	0.6699	0.1200	0.4814	0.044*
C11	0.60365 (17)	-0.00366 (12)	0.32978 (8)	0.0340 (4)
H11	0.5836	-0.0639	0.2986	0.041*
C12	0.62805 (17)	-0.10377 (13)	0.45236 (9)	0.0375 (4)
H12A	0.5627	-0.1555	0.4258	0.045*
H12B	0.5966	-0.0851	0.4995	0.045*
C13	0.76758 (16)	-0.15711 (12)	0.47099 (8)	0.0294 (3)
C14	0.88512 (18)	-0.11324 (14)	0.44907 (9)	0.0379 (4)
H14	0.8783	-0.0491	0.4214	0.046*
C15	1.01216 (19)	-0.16348 (15)	0.46771 (11)	0.0478 (5)
H15	1.0900	-0.1343	0.4517	0.057*
C16	1.02296 (19)	-0.25688 (16)	0.51008 (11)	0.0488 (5)
H16	1.1089	-0.2898	0.5239	0.059*
C17	0.90668 (18)	-0.30224 (14)	0.53235 (9)	0.0409 (4)
H17	0.9148	-0.3657	0.5608	0.049*
C18	0.77854 (16)	-0.25356 (12)	0.51251 (8)	0.0304 (3)
C19	0.64901 (18)	-0.30062 (13)	0.53515 (10)	0.0426 (4)
H19A	0.6259	-0.2593	0.5775	0.051*
H19B	0.5732	-0.2925	0.4930	0.051*
C20	0.64394 (19)	-0.45501 (12)	0.62419 (8)	0.0382 (4)
H20	0.6285	-0.4133	0.6653	0.046*
C21	0.67567 (18)	-0.58996 (13)	0.55355 (9)	0.0407 (4)
H21	0.6869	-0.6603	0.5371	0.049*
C22	0.67997 (19)	-0.50032 (14)	0.51112 (9)	0.0433 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H22	0.6934	-0.4972	0.4608	0.052*
O1	0.69190 (13)	0.35191 (9)	0.11146 (6)	0.0465 (3)
O2	0.69910 (18)	0.28649 (10)	0.22607 (7)	0.0728 (5)
O3	0.63128 (16)	0.76656 (10)	0.24541 (8)	0.0623 (4)
O4	0.61815 (14)	0.65379 (10)	0.33933 (7)	0.0507 (3)
Co1	0.58188 (3)	0.163209 (16)	0.199462 (11)	0.03716 (9)
N1	0.61394 (14)	0.09605 (10)	0.30478 (7)	0.0355 (3)
N2	0.62601 (13)	-0.00679 (10)	0.40605 (6)	0.0320 (3)
N3	0.66068 (14)	-0.41468 (10)	0.55676 (7)	0.0363 (3)
N4	0.65211 (15)	-0.56183 (10)	0.62477 (7)	0.0376 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0446 (10)	0.0288 (8)	0.0349 (8)	0.0005 (7)	0.0134 (7)	-0.0012 (7)
C2	0.0450 (10)	0.0350 (9)	0.0322 (8)	-0.0061 (8)	0.0081 (7)	-0.0004 (7)
C3	0.0651 (13)	0.0405 (9)	0.0284 (8)	-0.0088 (9)	0.0029 (8)	0.0044 (7)
C4	0.0632 (13)	0.0539 (11)	0.0357 (9)	-0.0103 (10)	0.0036 (9)	-0.0056 (8)
C5	0.0629 (13)	0.0392 (9)	0.0427 (10)	-0.0196 (9)	0.0144 (9)	-0.0098 (8)
C6	0.0732 (15)	0.0381 (10)	0.0474 (10)	-0.0159 (9)	0.0239 (10)	-0.0020 (8)
C7	0.0710 (14)	0.0358 (9)	0.0299 (8)	-0.0082 (9)	0.0136 (8)	0.0033 (7)
C8	0.0704 (14)	0.0320 (8)	0.0376 (9)	-0.0129 (9)	0.0144 (9)	-0.0138 (8)
C9	0.0589 (12)	0.0271 (8)	0.0317 (8)	-0.0047 (8)	0.0065 (8)	-0.0034 (7)
C10	0.0442 (10)	0.0390 (9)	0.0261 (7)	-0.0042 (8)	0.0028 (7)	-0.0037 (7)
C11	0.0484 (11)	0.0268 (7)	0.0267 (7)	-0.0009 (7)	0.0057 (7)	-0.0001 (6)
C12	0.0350 (10)	0.0401 (9)	0.0376 (8)	-0.0006 (7)	0.0064 (7)	0.0152 (7)
C13	0.0305 (9)	0.0332 (8)	0.0241 (7)	-0.0033 (7)	0.0036 (6)	0.0005 (6)
C14	0.0377 (10)	0.0389 (9)	0.0377 (8)	-0.0064 (8)	0.0077 (7)	0.0040 (7)
C15	0.0334 (11)	0.0568 (11)	0.0551 (11)	-0.0066 (9)	0.0132 (9)	-0.0003 (9)
C16	0.0302 (11)	0.0564 (11)	0.0590 (11)	0.0073 (9)	0.0050 (8)	-0.0021 (9)
C17	0.0405 (11)	0.0386 (9)	0.0421 (9)	0.0045 (8)	0.0023 (8)	0.0042 (8)
C18	0.0327 (9)	0.0321 (8)	0.0264 (7)	-0.0001 (7)	0.0052 (6)	0.0009 (6)
C19	0.0405 (11)	0.0357 (8)	0.0533 (10)	0.0041 (8)	0.0127 (8)	0.0184 (8)
C20	0.0537 (11)	0.0320 (8)	0.0305 (8)	0.0004 (8)	0.0114 (7)	0.0034 (7)
C21	0.0508 (11)	0.0338 (8)	0.0413 (9)	-0.0012 (8)	0.0187 (8)	-0.0043 (7)
C22	0.0542 (12)	0.0466 (10)	0.0337 (8)	-0.0053 (9)	0.0201 (8)	-0.0009 (8)
01	0.0559 (8)	0.0480 (7)	0.0332 (6)	-0.0070 (6)	0.0002 (6)	-0.0032 (5)
02	0.1385 (15)	0.0422 (7)	0.0405 (7)	-0.0395 (9)	0.0230 (8)	-0.0041 (6)
O3	0.0897 (11)	0.0376 (7)	0.0610 (8)	0.0019 (7)	0.0166 (8)	0.0034 (6)
O4	0.0642 (9)	0.0535 (8)	0.0360 (6)	-0.0124 (6)	0.0131 (6)	-0.0060 (5)
Co1	0.06634 (19)	0.02305 (11)	0.02269 (11)	-0.00140 (10)	0.00917 (10)	-0.00115 (8)
N1	0.0525 (9)	0.0282 (7)	0.0257 (6)	-0.0011 (6)	0.0065 (6)	0.0003 (5)
N2	0.0348 (8)	0.0334 (7)	0.0274 (6)	-0.0003 (6)	0.0037 (5)	0.0080 (5)
N3	0.0443 (9)	0.0333 (7)	0.0331 (6)	-0.0007 (6)	0.0115 (6)	0.0086 (6)
N4	0.0510 (9)	0.0309 (7)	0.0317 (7)	0.0005 (6)	0.0089 (6)	0.0037 (6)

Geometric parameters (Å, °)

······································			
C1—O1	1.2240 (19)	C12—C13	1.503 (2)

C1—O2	1.2673 (19)	C12—H12A	0.9700
C1—C2	1.524 (2)	C12—H12B	0.9700
C2—C7	1.531 (2)	C13—C14	1.385 (2)
C2—C3	1.538 (2)	C13—C18	1.398 (2)
С2—Н2	0.9800	C14—C15	1.380 (2)
C3—C4	1.521 (2)	C14—H14	0.9300
С3—НЗА	0.9700	C15—C16	1.374 (3)
С3—Н3В	0.9700	С15—Н15	0.9300
C4—C5	1.527 (3)	C16—C17	1.385 (3)
C4—H4A	0.9700	C16—H16	0.9300
C4—H4B	0.9700	C17—C18	1.383 (2)
C5—C8	1.526 (3)	C17—H17	0.9300
C5—C6	1.536 (3)	C18—C19	1.509 (2)
С5—Н5	0.9800	C19—N3	1.461 (2)
C6—C7	1.527 (2)	С19—Н19А	0.9700
С6—Н6А	0.9700	С19—Н19В	0.9700
С6—Н6В	0.9700	C20—N4	1.3222 (19)
С7—Н7А	0.9700	C20—N3	1.3377 (19)
С7—Н7В	0.9700	C20—H20	0.9300
C8—O3	1.237 (2)	C21—C22	1.346 (2)
C8—O4	1.289 (2)	C21—N4	1.374 (2)
C9—C10	1.345 (2)	C21—H21	0.9300
C9—N1	1.376 (2)	C22—N3	1.367 (2)
С9—Н9	0.9300	C22—H22	0.9300
C10—N2	1.367 (2)	O2—Co1	1.9185 (13)
С10—Н10	0.9300	O4—Co1 ⁱ	1.9682 (15)
C11—N1	1.3199 (19)	Co1—O4 ⁱⁱ	1.9682 (15)
C11—N2	1.3432 (18)	Co1—N4 ⁱⁱⁱ	2.0306 (13)
C11—H11	0.9300	Co1—N1	2.0311 (12)
C12—N2	1.4541 (19)	N4—Co1 ^{iv}	2.0306 (13)
O1—C1—O2	123.04 (15)	C13—C12—H12B	108.7
O1—C1—C2	121.85 (14)	H12A—C12—H12B	107.6
O2—C1—C2	115.09 (14)	C14—C13—C18	119.29 (15)
C1—C2—C7	111.52 (13)	C14—C13—C12	122.16 (14)
C1—C2—C3	111.46 (13)	C18—C13—C12	118.55 (14)
C7—C2—C3	111.64 (13)	C15-C14-C13	120.84 (16)
С1—С2—Н2	107.3	C15—C14—H14	119.6
С7—С2—Н2	107.3	C13-C14-H14	119.6
С3—С2—Н2	107.3	C16—C15—C14	119.63 (17)
C4—C3—C2	113.23 (14)	С16—С15—Н15	120.2
С4—С3—Н3А	108.9	C14—C15—H15	120.2
С2—С3—НЗА	108.9	C15—C16—C17	120.41 (17)
C4—C3—H3B	108.9	С15—С16—Н16	119.8
С2—С3—Н3В	108.9	С17—С16—Н16	119.8
НЗА—СЗ—НЗВ	107.7	C18—C17—C16	120.26 (16)
C3—C4—C5	111.62 (14)	С18—С17—Н17	119.9
C3—C4—H4A	109.3	С16—С17—Н17	119.9
С5—С4—Н4А	109.3	C17—C18—C13	119.54 (15)

C3—C4—H4B	109.3	C17—C18—C19	122.00 (14)
C5—C4—H4B	109.3	C13—C18—C19	118.46 (14)
H4A—C4—H4B	108.0	N3—C19—C18	114.22 (14)
C8—C5—C4	114.75 (16)	N3—C19—H19A	108.7
C8—C5—C6	110.77 (16)	C18—C19—H19A	108.7
C4—C5—C6	108.75 (15)	N3—C19—H19B	108.7
С8—С5—Н5	107.4	С18—С19—Н19В	108.7
С4—С5—Н5	107.4	H19A—C19—H19B	107.6
С6—С5—Н5	107.4	N4—C20—N3	111.26 (14)
C7—C6—C5	110.70 (14)	N4—C20—H20	124.4
С7—С6—Н6А	109.5	N3—C20—H20	124.4
С5—С6—Н6А	109.5	C22—C21—N4	109.76 (14)
С7—С6—Н6В	109.5	C22—C21—H21	125.1
С5—С6—Н6В	109.5	N4—C21—H21	125.1
H6A—C6—H6B	108.1	C21—C22—N3	106.33 (14)
C6—C7—C2	112.53 (14)	C21—C22—H22	126.8
С6—С7—Н7А	109.1	N3—C22—H22	126.8
С2—С7—Н7А	109.1	C1—O2—Co1	125.78 (11)
С6—С7—Н7В	109.1	C8—O4—Co1 ⁱ	109.44 (12)
С2—С7—Н7В	109.1	O2—Co1—O4 ⁱⁱ	130.75 (6)
Н7А—С7—Н7В	107.8	O2—Co1—N4 ⁱⁱⁱ	113.50 (6)
O3—C8—O4	121.2 (2)	O4 ⁱⁱ —Co1—N4 ⁱⁱⁱ	99.08 (6)
O3—C8—C5	120.01 (17)	O2—Co1—N1	95.80 (5)
O4—C8—C5	118.80 (17)	O4 ⁱⁱ —Co1—N1	107.05 (5)
C10—C9—N1	109.56 (14)	N4 ⁱⁱⁱ —Co1—N1	109.79 (5)
С10—С9—Н9	125.2	C11—N1—C9	105.55 (12)
N1—C9—H9	125.2	C11—N1—Co1	133.27 (10)
C9—C10—N2	106.62 (13)	C9—N1—Co1	121.00 (10)
C9—C10—H10	126.7	C11—N2—C10	107.12 (12)
N2-C10-H10	126.7	C11—N2—C12	125.77 (13)
N1—C11—N2	111.14 (13)	C10-N2-C12	127.07 (12)
N1-C11-H11	124.4	C20—N3—C22	107.30 (13)
N2-C11-H11	124.4	C20—N3—C19	125.54 (14)
N2—C12—C13	114.42 (13)	C22—N3—C19	127.00 (13)
N2—C12—H12A	108.7	C20—N4—C21	105.34 (13)
С13—С12—Н12А	108.7	C20—N4—Co1 ^{iv}	126.46 (11)
N2—C12—H12B	108.7	C21—N4—Co1 ^{iv}	125.35 (11)

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) x, -y-1/2, z-1/2; (iv) x, -y-1/2, z+1/2.

Fig. 1